MATH 5061 Lecture 2 (Jan 20)

Problem Set 1 due next Wed. via Blackboard.

 $Last time: abstract manifolds | smooth maps etc.....$

Recall: A smooth map
$$
f : M^m \rightarrow N^n
$$
 is immersion/submersion
at $p \in M$ iff $d_p(\psi \circ f \circ \phi^*)$ is 1-1 onto
in any charts around $p \in M$ and f(p) $\in N$
locally (by IFT), in some local coord.

\n
$$
\text{lim}{\text{argmin}}
$$
 : \n $f(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0)$ \n

\n\n $\text{Submatrix} : \quad f(x_1, \ldots, x_m) = (x_1, \ldots, x_n)$ \n

\n\n $(m \geq n)$ \n

Tangent Bundle $M_{\text{otivation}}$: $M^m \text{ }\in \text{ }\mathbb{R}^{m+k}$ submanifold $T_{M} = \begin{cases} V \in \mathbb{R}^{m+k} \\ V \in \mathbb{R}^{m+k} \end{cases}$ 3 smooth C: $(-\epsilon, \epsilon) \rightarrow M$ st. $B^H \geq 2^{H(p)}$ $\frac{F(p)}{P(p)}$ $f(0)$ $\frac{F(p)}{P(p)} = \left\{ V \in \mathbb{R}^m \mid \text{c}(0) = p, \text{c}(0) = v \right\}$ $M \rightarrow v = g(\omega)$.
|
| Note: TpM is an M-dimil subspace in R Two ways to describe this subspace $\begin{array}{lll} \text{(D) locally }, M = 5^7 \text{(0) for some } f: \mathcal{U} \in \mathbb{R}^{m+k} \rightarrow \mathcal{U}^k \\ & \Rightarrow & \text{T. M} = \text{ker}(A + 1) & \text{dim: (m+k) - k = m} \end{array}$ m \Rightarrow $T_P M = \ker (df_P)$ I \odot locally, parametrization $g : \omega \in \mathbb{R}^{m+n}$ \Rightarrow T_pM = dg (R^m) dim = m

 $Q:$ How to define T_PM in the setting of abstract manifolds?

 $\frac{Def^2}{\cdot}$: Let $p \in M$. Given curves $Ci : I_i \rightarrow M$, i=1.2, where
I., Is $\in R$ open intervals containing of st CI(0) = $p = C_2(0)$. $I_{1},I_{2} \in \mathbb{R}$ open intervals containing \circ

We say $C_1 \sim C_2$ iff \exists chart (u, ϕ) around p s.t.
Ex: This is an \bigwedge^d $\frac{\text{Ex: This is an}}{\text{equivalent value of R}}$ ($\phi \cdot C_1$)'(0) = ($\phi \cdot C_2$)'(0) inside IR

 $T_{P}M := \left\{ [c] | c: I \rightarrow M \text{ curve st. } C(s) = p \right\}$

Remork: . TpM m-dim'l (abstract) vector space.

" The relation ~ above is "chart -independent".

$$
\frac{\text{Def}^{\mathfrak{A}}}{\text{Tangent Bundle}}: \quad \text{TM} := \frac{11}{P^{\epsilon M}} \text{ T}_{P}M = \{ (P.v) : pe M, ve T_{P}M \}.
$$
\n
$$
\text{Tangent Bundle} \text{difjohat union}
$$

Thm: TM is a smooth manifold (of dim= 2.dim M)

"Why?" Desribe the local charts for TM.

Def	A vector bundle (of rank n) consists of a map		
Let's new (to't be a space)	Next's new		
St. (1) E, B smooth maps. Tj smooth onto	$l\pi$		
(2) \exists open cover $\{U_i\}_{i\in I}$ of B and B			
\exists $diff$ on $l\pi$	$l\pi$		
load	\exists $diff$ on $l\pi$	$l\pi$	
(3) The "transition maps" $hl: \pi^{u}(u) \xrightarrow{u} u \in R^{n}$			
(4) The "transition maps" $hl: \pi^{u}(u) \xrightarrow{u} u \in R^{n}$			
Area differentiable of the form:	$h: \bullet h_{j}^{-1}(x, y) = \{x, g_{ij}(x) \cdot y\}$		
where $g_{ij}: U: \neg U_{ij} \rightarrow GL(n, R)$ smooth (in x).			
Picture:	\mathbb{R}^{n}		
$u: \mathbb{R}^{n}$	$\frac{h_{ij}}{1}$	$\frac{\pi(u_{ij})}{n(u_{ij})}$	$\frac{h_{ij}}{1}$
$u: \mathbb{R}^{n}$	$\frac{h_{ij}}{1}$	$\frac{\pi(u_{ij})}{n(u_{ij})}$	$\frac{h_{ij}}{1}$
$u_{ij} \in \mathbb{R}^{n}$			

 u_i x u_j B
g_{ij}(x) \in GL(n, R)

 \mathbf{B}

 $\frac{1}{u_{j}}$

Examples: (ii) $M \times R^{n}$ "trivial bundle". (iii) TM is a rank in vector bundle, where $m = d$ im M. Ec₁ $R \rightarrow TM$ a $(\rho \cdot v)$ local trivialization $h: \pi(u_i) \longrightarrow u_i \times \mathbb{R}^n$ $\begin{array}{ccc}\n\pi & & \downarrow & & \downarrow & & \downarrow \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
 & & & \downarrow & & \downarrow & & \downarrow\n\end{array}$ $P \cdot V$) \mapsto ($\phi_i(p)$, ($\phi_i \circ G$) $M \geqslant P$ $\{(u_i, \phi_i)\}\$ chart $\left\{\begin{matrix}u_i & \cdots & d_i(\phi_i \circ \phi_i) \\ \vdots & \vdots & \vdots \\ u_i & \cdots & v_i\end{matrix}\right\} \in GL(n, \mathbb{R})$ on M ofrank ⁿ $Def²$: A vector bundle $\pi : E \rightarrow B$ is trivia if \exists diffeo $h : E \stackrel{S}{\longrightarrow} B \times R^n$ s.t. it is fiberwise linear isomorphism, ie $h : \pi(x) \xrightarrow{\epsilon} \{x\} \times \mathbb{R}^n$. $Def²: A$ smooth map $S:B \to E$ is called a section of the

> vector bundle π : $E \rightarrow 8$ if $\pi \cdot S = id_B$. $S(x) \in \pi^{r}(x) \in \mathbb{R}^{n}$

S

 $\boxed{\pi}$

 $\frac{1}{x}$

 E_3 : $E = B \times R^n$ A section $S : B \to \mathbb{R}^n$ is a vector-valued function

Vector Fields on manifolds

Let M" be a smooth M-manifold, tangent bundle TM.

 $Def^u: A vector field on M is just a section X : M \rightarrow TM$ of the tangent bundle TM

 M otation: $T(TM)$: = { sections of TM } $\{\infty\}$ -dim'd vector space}

Def²: (Pushforward of tangent vectors) Given smooth map $f : M \to N$, and $p \in M$. then 3 a linear map, differential of f at p.

$$
df_{p}: T_{p}M \longrightarrow T_{f(p)}N
$$

defined by $df_p(c'(0)) = (fc)(0)$ where C I +M, $c(0) = p$

T_M M df_p T_{f(p)}N
 $\frac{1}{\sqrt{2\pi}}$ M df_p T_{f(p)}N

Note: afp is indep of the choice of a representing $v \in T_pM$

$$
\frac{Chain Rule: \qquad d (9 \cdot f)_{p} = d g_{f(p)} \cdot d f_{p}}{M \xrightarrow{f} N \xrightarrow{g} P} T_{pM} \xrightarrow{df_{p}} T_{f(p)} N \xrightarrow{dg_{f(p)}} T_{g(f(p))} P}
$$
\n
$$
M \xrightarrow{g} N \xrightarrow{g} P \xrightarrow{f} T_{pM} \xrightarrow{df_{p}} T_{g(f(p))} P
$$

Digression : Vector Fields on \mathbb{S}^n . $S^{n} \in \mathbb{R}^{n+1}$ (unit sphere centered at 0) $TS^{\prime} = \{ (p, v) \in S^{\prime \prime} \times R^{\prime \prime \prime \prime} \mid \langle p, v \rangle_{R^{\prime \prime \prime \prime}} = 0 \}$ $T(TS') = \{X : S'' \rightarrow \mathbb{R}^{n+1} \text{ smooth} \mid \langle \rho, X(\rho) \rangle = 0 \text{ VPE}^n \}$ T hm: TM trivial \iff \exists m linearly indep. vector fields on M . Def": M is parallelizable if TM is trivial. Hard Thm 1: All closed orientable 3-manifolds are parallelizable. Hard Thm $2: S^n$ is parallelizable iff $n = 1, 3$ and 7 \sum Thm: (Higher dim'l "Hairy Ball Theorem") $S^2 \times R^2$ \approx Any $X \in F(TS')$ must vanish somewhere when n is even Remarks : \cdot Thm \Rightarrow TSⁿ is Not trivial when n is even . N=2 follows from Poincare-Hopf Thm: \sum index $X(p) = \chi(S^2) = 2 \pm o$ PEM
Calon Xcp1 0 Sketch of Proof $(n_2 + n_1)$ Milnor) Suppose \exists nowhere vanishing vector field X on S $\frac{1}{2}$ WhoG. normalized to $\|\mathsf{X}\| \equiv 1$. EX Define $f: S'(1) \stackrel{\cong}{\longrightarrow} S'(1+f^{2})$ differ $x \longmapsto x + \varepsilon \times (x)$

